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Abstract. A large fraction of fossil fuel CO2 emissions occur within “hotspots”, such as cities and power plants, which cover 

a very small fraction of the land surface. Although some of these emission hotspots are monitored closely, there is no 

detailed emission inventory for most of them. Space-borne imagery of atmospheric CO2 has the potential to provide 

independent estimates of CO2 emissions from hotspots. But first, what is a hotspot needs to be defined for the purpose of 25 

satellite observations. The proposed space-borne imagers with global coverage planned for the coming decade have a pixel 

size on the order of a few square kilometers, and a XCO2 accuracy and precision of <1 ppm for individual pixels. This 

resolution and precision is insufficient to provide a cartography of emissions for each individual pixel. Rather, the integrated 

emission of the diffuse emitting area and the intense point sources are sought. In this study, we address the question of the 

global characterization of area and point fossil fuel CO2 emitting sources (those hotspots are called emission clumps 30 

hereafter) that may cause coherent XCO2 plumes in space-borne CO2 images. An algorithm is proposed to identify emission 

clumps worldwide, based on the ODIAC global high resolution 1 km fossil fuel emission data product. The clump algorithm 

selects the major urban areas from a GIS (geographic information system) file and two emission thresholds. The selected 

urban areas and a high emission threshold are used to identify clump cores such as inner city areas or large power plants. A 

low threshold and a random walker (RW) scheme are then used to aggregate all grid cells contiguous to cores in order to 35 

define a single clump. With our definition of the thresholds, which are appropriate for a space imagery with 0.5 ppm 

precision for a single XCO2 measurement, a total of 11,314 individual clumps, with 5,088 area clumps and 6,226 

point-source clumps (power plants), are identified. These clumps contribute 72% of the global fossil fuel CO2 emissions 

according to the ODIAS inventory. The emission clumps is a new tool for comparing fossil fuel CO2 emissions from 
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different inventories, and objectively identifying emitting areas that have a potential to be detected by future global satellite 40 

imagery of XCO2. The emission clump data product is distributed from https://doi.org/10.6084/m9.figshare.7217726.v1. 

1 Introduction 

Monitoring the effectiveness of emission reductions after the Paris Agreement on Climate (UNFCCC, 2015) requires 

frequently updated estimates of fossil fuel CO2 emissions and a global synthesis of these estimates. The need for emission 

monitoring goes beyond national estimates, as many cities and regions have set concrete objectives to reduce their 45 

greenhouse gas emissions. The CO2 emissions (direct and indirect) related to final energy use in cities are estimated to be 71% 

of the global total (IEA, 2008; Seto et al., 2014). In addition, power plants account for ~40% of direct energy-related CO2 

emissions (Tong et al., 2018), and are subject to regulations that require a regular reporting of their emissions. The 

contribution from cities and power plants to national and global mitigation efforts is thus critical (Creutzig et al., 2015; Shan 

et al., 2018). 50 

Research to quantify emissions based on prior information on their magnitude and distribution, atmospheric CO2 

concentration measurements and atmospheric transport models is a branch of science called atmospheric CO2 inversions. 

Inversions of fossil fuel CO2 emissions have used in-situ surface networks around cities (Bréon et al., 2015; Lauvaux et al., 

2016; Staufer et al., 2016), but the deployment of a network around each city may be impractical. Alternatively, it is possible 

to measure vertically integrated columns of dry air mole fractions of CO2 (XCO2) from satellites passing over emission 55 

hotspots. Satellite measurements offer the advantage of global spatial coverage, but research studies consistently outlined 

that satellite XCO2 measurements need to have a high precision (< 1 ppm) and a spatial sampling at high resolution (< 2-3 

km horizontal resolution) (Bovensmann et al., 2010; O’Brien et al., 2016). For example, the Greenhouse Gases Observing 

Satellite (GOSat-2) aims to measure XCO2 at 0.5 ppm precision 

(https://directory.eoportal.org/web/eoportal/satellite-missions/g/gosat-2). The single sounding random error in XCO2 from 60 

the Orbiting Carbon Observatory 2 (OCO-2) is on the order of magnitude of 0.5 ppm (Eldering et al., 2017; Chatterjee et al., 

2017). XCO2 measurements from selected 10 km wide OCO-2 tracks downwind of large power plants were used to quantify 

their emissions by fitting observed XCO2 plumes with Gaussian dispersion models (Nassar et al., 2017). According to Nassar 

et al., (2017), the uncertainties in the emissions from three selected U.S. power plants were constrained within 1–17% of 

reported daily emission values. The primary scientific goal of the OCO-2 mission was to estimate natural land and ocean 65 

carbon fluxes, and tracks overpassing power plants are very sporadic, given the narrow swath width and frequent clouds. In 

order to improve the sampling of the atmosphere, XCO2 imagers (e.g. passive spectral-imagers in the short wave infrared 

spectrum) are under study. The list includes the Geostationary Carbon Observatory (GeoCARB) mission (Polonsky et al., 

2014), the OCO-3 instrument on board the International Space Station capable of pointing to chosen emitting areas 

(https://www.nasa.gov/mission_pages/station/research/experiments/2047.html) and a constellation of low earth orbiting 70 
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(LEO) imagers with a swath of a few hundred kilometers planned as future operational missions within the European 

Copernicus Program (Ciais et al., 2015).  

The ability of imaging instruments to reduce uncertainty on CO2 emissions was investigated by atmospheric inversions 

with pseudo-data, that is, Observing System Simulation Experiments (OSSEs), but only for case studies of limited duration. 

OSSEs were performed for large cities (Broquet et al., 2018; Pillai et al., 2016), single power plants (Bovensmann et al., 75 

2010) or for a region encompassing several cities (O’Brien et al., 2016). An OSSE study with one LEO imager over Paris 

(Broquet et al., 2018) solved for emissions during the 6 h before a given satellite overpass. Their results showed that the 

uncertainty (~25%) in the 6 h mean emissions in the prior estimates could be reduced to less than 10% during few days when 

the wind speed is low and there is not much cloud. The results of such case studies are informative about the potential of 

satellite observations in quantifying fossil fuel CO2 emissions, but do not inform systematically about how many hotspots, 80 

and which fraction of emissions worldwide could be constrained with XCO2 imagers. 

A prerequisite for assessing the capability of satellite imagers is to have a high resolution global map of fossil fuel CO2 

emissions. We use in this study the ODIAC map at 30×30 arc-seconds (~ 1 km×1 km) (Sect. 2.1). Not all the emitting 1 x 1 

km land grid-cells of such a map will have emissions sufficiently intense to produce a XCO2 plume detected with a satellite 

(Nassar et al., 2017; Hakkarainen et al., 2016). On the other hand, a cluster of contiguous emitting grid cells will create a 85 

stronger plume than a single emitting grid cell, so that the uncertainty on the sum of emissions from a cluster could be 

reduced with space-borne measurements. This poses the research question of how to define those clusters of emitting pixels 

(called emission clumps hereafter) who will generate individual XCO2 plumes being detectable from space. The emission 

clumps should include intense area sources and large isolated point sources (e.g. power plants, large factories). Using 

political and administrative area of cities to define clumps does not work for this purpose because the same administrative 90 

area may contain separate large point sources or multiple hotspots forming separable plumes, as well as areas with no or little 

emission. The definitions of emitting areas differ among inversion studies. Broquet et al. (2018) estimated emissions from 

the Île de France region, while Pillai et al. (2016) defined their emitting region as an area of 100 km×100 km around Berlin. 

The arbitrary choice of emitting areas across studies make the comparison of their results difficult and are not applicable 

worldwide. This justifies the need for a systematic and objective definition of emission clumps that constitute observing 95 

targets for satellites.  

The algorithm for calculating emission clumps developed in this study is inspired by research on mapping urban area 

and socio-demographic activities (Li and Zhou, 2017; Elvidge et al., 1997; Zhou et al., 2015; Su et al., 2015; Doll and 

Pachauri et al., 2010; Letu et al., 2010). The corresponding algorithms can be grouped in classification-based or 

threshold-based. Classification-based algorithms use dataset such as normalized difference vegetation index (NDVI) and 100 

normalized difference water index (NDWI) to train a machine-learning model to classify urban and non-urban areas (Cao et 

al., 2009; Huang et al., 2016). Threshold-based algorithms classify urban grid cells where some continuous variables (e.g. 

nighttime lights) are above a given threshold (Elvidge et al., 1997; Liu and Leung, 2015; Li et al., 2015; Liu et al., 2015). In 
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threshold-based methods, given the high spatial heterogeneity of urbanization and urban forms, efforts have been devoted to 

find local optimal thresholds, such as the “light-picking” approach to find a local nighttime background light surrounding a 105 

target grid cell (Elvidge et al., 1997), or determining local thresholds by matching local/site-based surveys and 

land-use/land-cover (LULC) datasets (Zhou et al., 2014). 

The problem of characterizing CO2 emission clumps posed here consists in delineating all areas that have a potential to 

generate detectable atmospheric XCO2 plumes. “Detectable” means here that the concentration within a plume formed by a 

clump should be large enough compared to the surrounding background in XCO2 images of typical spatial resolution of ≈1 110 

km. The magnitude of a minimum detectable XCO2 enhancement in a plume (relative to the surrounding background) 

depend on individual XCO2 sounding precision. Such sounding precision should be of similar order of magnitude worldwide, 

although the solar zenith angle, aerosol loads, surface albedo etc. will affect it (Buchwitz, et al., 2013). In this context, 

contrary to the algorithms used for mapping urban area, common global minimum emission thresholds for land grid cells 

forming a clump are relevant. 115 

This study aims to provide a global dataset of fossil fuel CO2 emission clumps for high-resolution atmospheric 

inversions that will use XCO2 imager data. Such a dataset can be used for OSSE studies to compare different imagery 

observation concepts for constraining fossil fuel CO2 emissions at clump scale over the whole globe. We propose an 

approach that combines a threshold-based and an image-processing algorithm. Section 2 describes the high-spatial resolution 

global emission map upon which clumps are calculated, and the algorithm to delineate the clumps worldwide. The spatial 120 

distribution and extent of the resulting clumps throughout the globe are described in Sect. 3 and are compared with clumps 

diagnosed by applying the same algorithm to other emission maps. Section 4 discusses the sensitivity of the resulting clumps 

to the precision of XCO2 measurements and future applications of this global dataset. Section 5 describes the data availability. 

Conclusions are drawn in Sect. 6. 

2. Methodology 125 

2.1 ODIAC fossil fuel CO2 emission map 

We use the high-spatial resolution (30" × 30" ≈ 1 km × 1 km) global annual fossil fuel CO2 emission map for the year 

2016 from the Open Source Data Inventory of Anthropogenic CO2 Emission (ODIAC, version 2017) (Oda and Maksyutov, 

2011; Oda et al., 2018) for calculating clumps. To our knowledge, it is the only emission map with global coverage and a 

spatial resolution high enough to match the pixel size of ≈ 1 km of atmospheric XCO2 imagers. We chose the year 2016 130 

assuming that the emission spatial distributions do not change significantly from year to year. The ODIAC dataset provides 

emissions from power plants based on the CARMA database (Carbon Monitoring and Action, http://carma.org). Emissions 

from these point sources were spatially allocated to the exact locations from CARMA. Emissions from other sources 

(industrial, residential, commercial sectors and daily land transportation) were estimated by subtracting the sum of emissions 
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from power plants in each country from the national totals given by the Carbon Dioxide Information and Analysis Center 135 

(CDIAC) (Boden et al., 2016). Annual emissions in each country excluding power plants were spatially distributed at 30" 

spatial resolution using nighttime light fields from the Defense Meteorological Satellite Program (DMSP) satellites. ODIAC 

has been used in atmospheric inversions to monitor CO2 emissions from cities (Oda et al., 2018; Lauvaux et al., 2016).  

Because CO2 produced by emissions is quickly dispersed by transport, XCO2 plumes sampled at a given time by a 

satellite image usually relate to emissions that occurred few hours before its acquisition (Broquet et al., 2018). Here we 140 

assumed an equator crossing time around 11:30 local time for LEO imagers on Sentinel missions (Buchwitz et al., 2013; 

Broquet et al., 2018), so that XCO2 plumes sampled by these imagers are from morning emissions. Different overpass times 

are also possible for other satellites. For example, Equator crossing times of OCO-2 and GOSAT are 13:00-13:30 local time. 

Geostationary imagers may provide a better temporal coverage of the emissions; e.g. GeoCARB images are considered to 

sample a city for multiple times within a day (O’Brien et al., 2016). 145 

We adopt here a focus on planned Sentinel LEO imagers, and thus use annual average of morning emissions for 

calculating emission clumps. To estimate morning emissions, we combined the ODIAC emission maps with the hourly 

profiles from the Temporal Improvements for Modeling Emissions by Scaling (TIMES) product (Nassar et al., 2013). In 

TIMES, the hourly profiles were provided as 24 scaling factors for each hour of the day that can be multiplied by daily 

average emissions to derive hourly emissions. Hourly scaling factors of TIMES were derived for residential, commercial, 150 

industrial, electricity production and mobile on-road sectors from the bottom-up model of fossil fuel CO2 emissions Vulcan 

v2.0 over the US (Gurney et al., 2009) with mobile non-road, cement manufacture and aircraft assumed temporally constant. 

The TIMES dataset also gives hourly scaling factors for other 19 high-emitting countries. These profiles were weighted by 

the emissions fraction in each sector from EDGAR to determine hourly profiles of total CO2 emissions. The US and other 19 

high-emitting countries are called proxy countries. Other countries in the world were assigned the same profiles than one of 155 

the proxy countries, accounting for standard international time zones, local socio-demographic patterns (e.g. time of day 

when people start to work, weekend defined according to different religions). The TIMES hourly profiles were derived at 

national scale (assuming identical hourly profiles within a country) and then shifted by hourly offsets according to local solar 

time to approximate the variability related to geophysical cycles. The original TIMES hourly profiles at 0.25°×0.25° 

resolution were downscaled at the spatial resolution of ODIAC, assuming the same profiles within each 0.25°×0.25° grid cell. 160 

For calculating clumps based on morning emissions, we multiplied the annual mean emission rate (unit: g C m-2 hr-1) in each 

grid cell of ODIAC by the average scaling factors of emissions between 6:00-12:00 local time.  

2.2 Calculation of emission clumps 

The emission clumps from point sources and intense area sources in ODIAC are separated in this study. In ODIAC, the 

point sources only refer to power plants in the CARMA database. Before clumps are calculated, Fig. 1 illustrates the ranked 165 

distribution of emission rates during morning hours from point sources (red) and other grid cells (blue). Excluding emissions 
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from point sources, the maximum emission rate of emitting grid cells from area sources is 20.7 g C m-2 hr-1 and most grid 

cells including point sources have much larger emission rates than this value. In total, 35% of the global total emissions are 

from 12433 30"×30" grid cells encompassing at least one point source. 

 170 

 

Figure 1 Cumulative distribution of mean emission rates during morning hours in ODIAC for power plants (red) and area 

sources (blue). The y-axis represents the cumulative share of global total annual emissions at each level of emission rate for a 

single land grid cell (x-axis). The vertical dash lines are the two thresholds used in the clump algorithm (see text). 

 175 

Figure 2 shows the flowchart of the clump algorithm. Fig. 3 illustrates how it operates for a small domain as an 

example. Firstly, only grid cells encompassing point sources with an emission rate larger than threshold-1 are considered. 

This threshold is chosen as 0.36 g C m-2 hr-1, based on the argument that, even without any atmospheric horizontal transport, 

emissions lower than this threshold over 6 hours would generate a local XCO2 excess of less than 0.5 ppm, the practical limit 

of individual sounding precision from current satellites (see Appendix for the detailed computation). This is illustrated in Fig. 180 

3b by the red grid cell labeled as 1 and 2. There are 6226 grid cells in ODIAC2017 who encompass at least one power plant 

and whose emission rates are above threshold-1, which account for >99.99% of total emissions of all CARMA power plants 

globally.  

Secondly, emissions clumps from area sources are calculated. We combine two data streams to calculate area clumps: 1) 

the administrative division of major urban areas; and 2) two thresholds (threshold-1 and threshold-2 detailed below) applied 185 

to the grid cells of ODIAC. We assume that a group of emitting pixels encompassing some adjacent high emitting pixels 
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(forming a core of the emission clump) and their surroundings will generate an individual plume in XCO2. The urban area 

and the high threshold (threshold-1) define the cores of each emission clump, while threshold-2 defines the lower limit of 

surrounding emitting pixels to be potentially included in the clumps. The four steps to compute area sources emission clumps 

are detailed as below. 190 

1) The value of threshold-2, above which emissions of a single emitting grid cell is selected to be potentially included 

in a clump, is chosen as 0.036 g C m-2 hr-1, a factor of 10 lower than threshold-1. The sum of emissions from grid cells above 

threshold-2 represents 82% of global total emissions (including point sources). Grid cells below threshold-2 are never 

included in any emission clump. Grid cells whose emission rates are above threshold-2 are illustrated in Fig. 3a by the 

yellow and orange grid cells;  195 

2) We then used the urban area GIS (geographic information system) file from the Environmental Systems Research 

Institute (ESRI, https://www.arcgis.com/home/item.html?id=2853306e11b2467ba0458bf667e1c584) to locate the geographic 

positions of major urban areas. ESRI contains 3615 separated urban areas, defined independently from the ODIAC emission 

map. We found 2017 ESRI urban areas containing at least one grid cell with emission above threshold-1. The remaining 

1598 ESRI urban areas are not considered hereafter. An illustration of one of the 2017 selected ESRI urban area is shown in 200 

Fig. 3c by the grid cells labeled as 3. Figure 4a-4c (solid lines) shows three examples of ESRI urban areas for major cities in 

Europe, North America and China. The grid cells within the ESRI urban area whose emission rates are above threshold-1 

define the cores of the clumps. 

3) Although the ESRI GIS file cover large cities of the world, smaller populated areas, like towns on the southeast coast 

of China that may also generate detectable plumes, are missed by ESRI map. This calls for a complementary step to identify 205 

non-ESRI emitting clumps. For the calculation of those non-ESRI clumps, we apply threshold-1 of 0.36 g C m-2 hr-1 to all 

grid cells that are not selected in the previous step as part of any ESRI core. Contiguous non-ESRI grid cells above 

threshold-1 form non-ESRI core of clumps. These non-ESRI core grid cells must be spatially distinct from the ESRI core 

grid cells. If they are adjacent to any ESRI core, they are absorbed by the ESRI ones. A total of 3071 non-ESRI cores are 

calculated, as shown in Fig. 3d by the grid cells labeled as 4; 210 

4) After ESRI and non-ESRI clump cores are defined, we aggregate all the emitting grid cells whose emission rates are 

larger than threshold-2 in their vicinity to form a clump. An ensemble of grid cells with emissions higher than threshold-2 in 

a domain with N cores are attributed to N distinct emission clumps. The attribution of a grid cell to a given core is calculated 

based on the spatial gradients of emissions and the distance between the emitting grid cells by using a “random walker” (RW) 

algorithm (Grady, 2006). RW is a type of algorithm used in the field of image segmentation, i.e. recognizing different 215 

segments/objects in a picture or photograph. This step is illustrated in Fig. 3e by the grid cells in light yellow.  

The RW algorithm defines the probability of each grid cell to belong to some known labeled “seeds” (i.e. the cores 

defined in steps 2 and 3 in this study). This algorithm imagines that a random walker start from each grid cell to be labeled 

(in this study, the grid cells whose emissions that are above threshold-2 but not included in the cores). The probability that 
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the walker will arrive at each known seeds, following the easiest path, are computed. The undefined grid cells are assigned to 220 

the seed that has the highest probability to be reached by the walker. Specifically, in this study, we define the probability that 

the walker move between two neighboring grid cells using an exponential decaying function of the ℓ2
 norm of the 

log-transformed local gradients in emissions (Grady, 2006):  

𝑤𝑖𝑗 = 𝑒−𝛽(𝑔𝑖−𝑔𝑗)
2

                                                                                   (1) 

where wij is the probability of motion between neighboring grid cells i and j, gi and gj are image intensity (defined as the 225 

log-transformed emission rate in this study), and β is a free penalization parameter for the motion of random walker (the 

greater the β, the more difficult the motion). In this study, β only impacts how the undefined grid cells are assigned to the 

cores. It balances the effect of local gradients and the distance of the path from the undefined grid cells to the seeds: the 

larger the gradients along a path between the undefined grid cells and the seeds, the smaller probability that the walker would 

move; and the longer the path, the smaller the probability that the walker would arrive at corresponding seeds. Larger β will 230 

lead to larger impact of emission gradients than that of distance. In this study, β=13 σg
-1, where σg is the standard deviation of 

the emission rates at all the grid cells in ODIAC. In general, the algorithm can effectively separate different clusters of grid 

cells with different spatial distributions. For instance, a clump with a flat distribution of emissions and a clump (of similar 

size as the former one) with more skewed emissions are separated near the steepest gradients. This assumes that large 

emission gradients will generate large gradients in XCO2 (given similar meteorological condition for neighboring clumps), 235 

and that different XCO2 plumes are separable where the XCO2 gradients are the largest.  

After the RW algorithm, grid cells above threshold-2 that are not contiguous to any core are discarded. This removes 10% 

of the total from the 82% of global emissions defined in step 1. As a result, 72% of the global emissions are included in the 

emission clumps (see more detailed discussion below). 

All the computation are made under the Python version 2.7 environment (Python Software Foundation, 240 

http://www.python.org) and the RW algorithm is from package “scikit-image” version 0.14dev (http://scikit-image.org/). 

 

Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2018-131

O
pe

n
 A

cc
es

s  Earth System 

 Science 

Data
D

iscu
ssio

n
s

Manuscript under review for journal Earth Syst. Sci. Data
Discussion started: 30 November 2018
c© Author(s) 2018. CC BY 4.0 License.



 

9 

 

 

Figure 2 The flow chart of emission clumps calculation. The colors qualitatively illustrate grid cell emission rates from low 

(light green) to high (red) 245 
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Figure 3 The processes of defining emission clumps. The colors qualitatively illustrate the emission rates from low (light 

green) to high (red). a) the emission field; b) 2 power plant (red grid cells) is defined as two individual clumps, labelled as 1 

and 2; c) The ESRI urban area is outlined by bold solid and dashed lines, but the ESRI core is labelled as 3 only for grid cells 250 
whose emission rates are above threshold-1; d) the orange area represent grid cells whose emissions are above threshold-1 to 

form a non-ESRI core, labelled as 4; e) each light-yellow grid cell is assigned to one of the clump cores using the RW 

algorithm (see the main text). Note that one power plant (labelled 2) is located within the ESRI urban area, but is identified 

as a different emission clump from the ESRI clump (labeled as 3 in Fig. 3e) 

 255 

3. Results 

3.1 Emission clumps defined on ODIAC emission map 

Figure 4 shows three regional clumps near Paris (France), New York (USA) and Beijing (China). The clumps near Paris 

are well isolated from each other. There are more emission clumps in the New York region. Because some clumps are close 

to each other in this region (e.g. New York and Clifton), their plumes will only be distinct when the wind direction is roughly 260 

perpendicular to the direction of the line connecting clumps (i.e. from southwest to northeast or the opposite for New York 

and Clifton). Near Beijing, there are a larger number of clumps than in the other two regions and their distribution is also 

more complex.  

Table 1 summarizes the clumps calculated for the globe, Europe (European Russia included), China, North America, 

South America, Africa, Australia and Asia (China excluded). In total, our algorithm calculates 11314 clumps, including 6226 265 

point sources, 2017 ESRI clumps, and 3071 non-ESRI clumps. The clump with largest emission is Shanghai, which emits 47 

Mt C per year. A large fraction of the non-ESRI clumps is found within China mainly located near the southeastern coast, 

which may be explained by the recent rapid urbanization (Shan et al., 2018; Wang et al., 2016) in this region. This is not 

documented by the ESRI map. The large number of non-ESRI clumps in China highlights the necessity to consider emitters 

outside the major cities (at least) in this country. In addition, the mean area of an emission clump is larger in China than over 270 

other continents/regions. This is because the southeast coast of China is densely populated even at rural places (yellow-green 
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in Fig. 4e), and because the emission rates per capita is also high in China (Janssens-Maenhout et al., 2017). As a result, our 

algorithm finds: 1) more cores (of non-ESRI clumps) in China than other regions; and 2) larger area with emission rates 

larger than threshold-2. 

Figure 5 shows the locations and annual emissions of the clumps. The densities of emission clumps are high in Europe, 275 

the East Coast of US, the East Coast of China and India. Fig. 6 shows the fractions of total emissions allocated to different 

clump categories. Globally, 27% of the clumps are calculated as non-ESRI, but the total emission from these clumps is less 

than 13% of the total emissions. Point sources form 55% of the total number of clumps and 44% of the total emissions. In 

China, however, point sources contribute only 21% of the total number of clumps and 39% of the total emissions, which may 

be explained by the fact that the power plants in China considered in CARMA dataset (and thus in ODIAC) are limited to the 280 

few larger power plants. Fig. 7 shows the cumulative distribution of the number of clumps and their emission for a few 

regions. Among ESRI clumps, 66% of them have an annual emission below 1 Tg C yr-1, but the cumulative emission from 

these low emitting clumps only account for 22% of the total emissions from all ESRI clumps. The inflexion point in Fig. 7 

(when the cumulative distribution curve turns from nearly 0% to a fast increase) indicates the importance of clumps whose 

annual emissions are above this value. For non-ESRI clumps and point sources, the inflexion points are near 0.1 Tg C yr-1.  285 
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Figure 4 Emission clumps near Paris (a and d), Beijing (b and e) and New York (c and f). In a-c, solid lines depict the urban 

areas from ESRI product. Colored patches depict the clump area resulting from the algorithm defined in this study. In d-f, 

solid lines depict the boundaries of final clumps (boundary of colored patches in a-c). Colored fields in d-f show the 290 
emissions from ODIAC product. Light dashed lines indicate 1º×1º grids. 
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Figure 5 The spatial distribution of emission clumps all over the globe. The inserted plots zooms over 4 regions that contain 295 
most of the clumps. 
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 300 

Figure 6 The fraction of the number (bars) and the fraction of emissions (hatched bars) found in the three types of clumps 

for European continent (European Russia included), China, North America (NA), South America (SA), Africa, Australia, 

Asia with China excluded (AS) and over the globe. The three colors represent ESRI clumps (yellow), non-ESRI clumps 

(green) and point-source clumps (red), respectively. The white-hatched bars indicate the fraction of ODIAC emissions that 

are not allocated into any clump by the algorithm. 305 

 

 

Figure 7 Cumulative distributions of the number (dashed lines) of emission clumps and of the emissions (solid lines) of the 

clumps for three categories of clumps (see text). 

 310 
Table 1 Characteristics of clumps defined in this study for the globe, European continent (European Russia included), China, 

North America (NA), South America (SA), Africa, Australia and Asia with China excluded (AS). 

 Globe Europe China NA 
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Total number of clumps 11314 2470 2091 2616 

Number of ESRI clumps 2017 300 404 292 

Number of non-ESRI clumps 3071 243 1243 302 

Number of point-source clumps 6226 1927 444 2022 

Mean area of one area clump (km2) 196 125 337 137 

Maximum area of one area clump (km2) 10356 6874 5762 5568 

Mean emission budget of one clump (Tg yr-1) 0.57 0.31 1.02 0.45 

Maximum emission budget of one clump (Tg yr-1) 47 17 47 15 

Minimum emission budget of one clump (Tg yr-1) 9.9×10
-4

 9.9×10
-3

 21×10
-4

 19×10
-4

 

Clump that has the largest annual emission Shanghai Moscow Shanghai Los Angeles 

Fraction of emissions from defined clumps to total emission 72% 60% 84% 70% 

Share of urban CO2 emissions to regional total in IEA report 67% 69% 75% 80% 

Share of urban energy use to regional total in GEA report 76% 77%1 65%2 86% 

 

(Table 1 continued) 

 SA Africa Australia AS 

Total number of clumps 477 470 110 2784 

Number of ESRI-urban clumps 172 108 12 705 

Number of non-ESRI clumps 69 144 5 1007 

Number of point-source clumps 235 218 93 1072 

Mean area of one area clump (km2) 186 183 133 229 

Maximum area of one area clump (km2) 4303 3438 3113 10356 

Mean emission budget of one clump (Tg yr-1) 0.35 0.43 0.69 0.63 

Maximum emission budget of one clump (Tg yr-1) 12 11 6.8 22 

Minimum emission budget of one clump (Tg yr-1) 20×10
-4

 26×10
-4

 21×10
-4

 17×10
-4

 

Clump that has the largest annual emission Buenos Aires Johannesburg Melbourne Riyadh 
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Fraction of emissions from defined clumps to total emission 52% 62% 76% 69% 

Share of urban CO2 emissions to regional total in IEA report - - 78% - 

Share of urban energy use to regional total in GEA report 85% 69%3 78% 63%4- 

1 Arithmetic mean of values for Western Europe and Eastern Europe 315 
2 In GEA report, this value correspond to China and Central Pacific Asia 
3 Arithmetic mean of values for Sub-Saharan Africa, North Africa and Middle East 
4 Arithmetic mean of values for Pacific Asia and South Asia 

3.2 Emission clumps based on other emission maps 

The clump results obviously depend on the input emission field. The ODIAC map is chosen as a reference because it is 320 

the only global map with a spatial resolution of ~ 1 km that we are aware of. But there are other emission products with 

coarser resolution or having only regional coverage. To test the dependency of calculated clumps on the choice of emission 

map, we apply the algorithm to three alternative global emission maps and two regional emission maps (Table 2). The three 

global emission maps are: PKU-CO2 v2 (Wang et al., 2013), FFDAS v2.0 (Rayner et al., 2010; Asefi-Najafabady et al., 

2014), EDGAR 4.3.2 (Janssens-Maenhout et al., 2017). The two regional emission maps are: the Multi-resolution Emission 325 

Inventory (MEIC) v1.2 for China (http://meicmodel.org/; Zheng et al., 2018) and the VULCAN inventory (Gurney et al., 

2009) v2.2 for the contiguous U.S. The resolutions of these emission maps are 0.1º or 10 km (Table 2), that is, about 12 

times coarser than ODIAC. Note that some small (in terms of area) groups of grid cells with high emission rates at finer 

scale than 0.1º are averaged at coarse grid cells in these coarse-resolution maps. The clumps derived from these alternative 

emission maps thus have a tendency to miss small clumps, compared to ODIAC. However, the comparison of the results for 330 

the largest clumps is still indicative of the robustness of the clump definition. The years of the additional emission maps are 

different from the year of ODIAC (Table 2) because some institutions do not have released their emission maps for 2017. 

We scale the different emission maps to the same national totals as ODIAC and we assume that the spatial distribution of 

clumps do not change significantly at continental and global scales so that the differences in the year for different emission 

maps is not expected to have strong impacts on the clump results. We compare the fractions of emissions in alternative maps 335 

(X) covered by the clumps calculated from these map (X-clumps) with the fraction covered by ODIAC-clumps to see 

whether the ODIAC-clump results miss significant emissions from X. Because the resolution of ODIAC and alternative 

emission maps are different, when computing the X emissions covered by ODIAC-clumps, we downscale map X to 30", 

assuming that emissions are distributed uniformly within each 0.1 º or 10 km grid cell. Since the actual distribution of 

emissions within each 0.1 º or 10 km grid cell is probably not uniform, this computation tend to overestimate the differences 340 

between ODIAC-clumps and X-clumps.  
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Table 2 The alternative emission maps used to compare with the results of ODIAC 345 
Emission product Coverage Resolution Year Reference 

EDGAR 4.3.2 Global 0.1º×0.1º 2010 Janssens-Maenhout et al., 2017 

PKU-CO2 v2 Global 0.1º×0.1º 2010 Wang et al., 2013 

FFDAS v2.0 Global 0.1º×0.1º 2009 http://hpcg.purdue.edu/FFDAS/Map.php; 

Rayner et al., 2010; Asefi-Najafabady et al., 

2014 

MEIC v1.2 Global 0.1º×0.1º 2010 http://meicmodel.org; Zheng et al., 2018 

VULCAN v2.2 74% 10 km×10 km 2002 Gurney et al., 2009 

 

Each 30" grid cell is classified into a confusion matrix (CM) with 4 categories: 1) grid cell belongs to ODIAC-clump 

and X-clump (true positive, TP); 2) grid cell belongs to ODIAC-clump but not to X-clump (false positive, FP); 3) grid cell 

belongs to X-clump but not to ODIAC-clump (false negative, FN); and 4) grid cell neither in ODIAC-clump nor in X-clump 

(true negative, TN). The fractions of emissions in each CM category are computed for different regions. This comparison 350 

mainly allows us to verify whether the clumps delineated by the two thresholds are consistent using ODIAC and other maps. 

We also checked the consistency of ESRI clumps between ODIAC-clump and X-clumps with a similar CM. Each grid 

cell is classified into four categories: 1) grid cell belongs to the same ESRI clump in ODIAC and X (ESRI-TP); 2) grid cell 

belongs to ESRI clumps in both ODIAC and X, but does not belong to the same ESRI clump (ESRI-DIFF); 3) grid cell only 

belongs to an ESRI clump either in ODIAC or X (ESRI-FALSE); and 4) grid cell does not belong to any ESRI clump in 355 

ODIAC nor in X (ESRI-TN). Consistency for non-ESRI clumps is not really expected because X-clumps tend to miss small 

clumps because of the underlying coarser-resolution maps. Consistency is not calculated for point-source clumps because not 

all emission products explicitly provide names for each power plant, making it difficult to determine whether the power 

plants from different maps within a same grid cell are the same infrastructure. 

VULCAN is arguably the best emission map for the US, for the use of the large amount of accurate data from local to 360 

national scales. PKU-CO2-v2 and MEIC v1.2, derived by Chinese institutions, used the exact locations of power plants and 

factories in China and detailed information of fuel consumption of each power plants and factories to estimate the point 

sources. They also used provincial data to distribute the non-point source emissions, resulting in more accurate estimates in 

the distribution of Chinese emissions than other global maps (Wang et al., 2013). EDGAR v4.3.2, developed by the Joint 

Research Center under the European Commission's service, has more realistic emission estimates in Europe. Therefore, we 365 

focus the clump consistency analysis between ODIAC and EDGAR v4.3.2 for Europe, between ODIAC, PKU-CO2-v2 and 

MEIC v1.2 for China, and between ODIAC and VULCAN v2.2 for the US.  
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Figure 8 shows the results of the CM analysis. In general, there is a considerable fraction of national/regional emissions 

covered by both ODIAC-clump and X-clump (red bars). The sum of the fractions of TP (red bars) and TN (pink bars) are 

larger than 70% for all countries and regions, indicating that the algorithm applied to different maps allocates consistently 370 

the same groups of emitting grid cells into clumps. In Europe, the fraction of EDGAR emissions allocated to 

EDGAR-clumps (red plus blue bars in Fig. 8) is close to the fraction of ODIAC emissions allocated to ODIAC clumps 

(black line). In China, the fraction from MEIC is also close to that derived from ODIAC. But this fraction in PKU-CO2-v2 

(54%) is lower than that derived from ODIAC in China (84%). The differences between these fractions derived from ODIAC, 

MEIC and PKU-CO2-v2 indicate large uncertainties in the distribution of emissions in China. This fraction in VULCAN 375 

(46%) is lower than that derived from ODIAC in USA (73%). In addition, in all regions, the fractions of emissions allocated 

to X-clumps (red plus blue bars) in X emission maps are all lower than those derived from ODIAC, indicating the emissions 

in ODIAC are more centralized toward populated areas than in other maps. This is attributed to the lack of line sources in 

ODIAC (Oda et al., 2018). The blue bars in Fig. 7, representing emissions from X maps that are not covered by 

ODIAC-clumps, are less than 10% of the total emissions in most cases, indicating that ODIAC-clumps miss only a small 380 

fractions of emission hotspots compared to other plausible fossil fuel CO2 emission fields even without any adjustment. 

However, ODIAC-clumps would capture some low-emitting grid cells in other emission maps, as shown by the green bars in 

Fig. 8. Further investigation into the three types of clumps: ESRI clumps, non-ESRI clumps and point-sources clumps shows 

that the largest differences between ODIAC and X lie in the latter two types (Fig. S1-S3). The non-ESRI clumps account for 

a small fraction of the total emissions (less than 20% in general, Fig. 6 and S2), and the coherence in terms of fractions of 385 

emissions covered by non-ESRI clumps between different emission maps is less than 5% (red bars in Fig. S2). There are also 

large disagreements in the emissions from point-source clumps between different emission maps, as displayed by Fig. S3.  

Figure 9 examines the consistency of the fractions of emissions covered by the same clumps between ODIAC and any 

emission map X. The consistency indicated by the red and pink bars is larger than 70%. The green bars are less than 10% in 

general, indicating that there are not many emission grid cells connecting different large cities. The major differences 390 

between ESRI clumps derived from various emission maps come from grid cells near the borders of ESRI clumps so that 

they are classified as ESRI clumps or other clumps in different emission maps (blue bars). 
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Figure 8 The fractions of emissions from corresponding emission products covered: 1) by both ODIAC-clumps and 395 
X-clumps (red); 2) only by X-clumps but not by ODIAC-clumps (green); 3) by ODIAC-clumps but not by X-clumps (blue); 

and 4) by neither ODIAC-clumps nor X-clumps (pink). The thick black lines indicate the fractions of emissions in ODIAC 

covered by ODIAC-clumps. 

 

 400 

 

Figure 9 The fractions of emissions from corresponding emission products covered 1) by the same ESRI clump from 

ODIAC and X (red); 2) by ESRI clumps in both ODIAC and X, but do not belong to the same ESRI urban area (green); 3) 

only by one of the ESRI clump in either ODIAC or X (blue); and 4) neither by any ESRI clump in ODIAC nor in X (pink). 
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 405 

4. Discussion 

In this study, we use the map of urban area from ESRI and two thresholds to derive emission clumps. Threshold-1 

determines the cores of the clumps, corresponding to a XCO2 enhancement larger than the precision (0.5 ppm) of individual 

soundings without atmospheric horizontal transport (see Sect. 2.2 and Appendix). The precision largely depends on the 

designs and configurations of different satellites. In this section, we test the sensitivity of the clumps to different assumptions 410 

on threshold-1 related to the precision of an individual sounding. The results listed in Table 3 show that the number of 

clumps are very sensitive to threshold-1, or individual XCO2 sounding precision. However, the fractions of emissions 

covered by the clumps do not change significantly with threshold-1. The total number of clumps is reduced by 34% when the 

precision of an individual XCO2 measurement is degraded to 1.0 ppm, compared to that obtained assuming 0.5 ppm, but the 

fraction of emissions covered by all clumps is only reduced from 72% to 61%, e.g. 15% relative change. This indicates that a 415 

larger value of threshold-1 mainly removes clumps with small emissions. On the other hand, the number and fraction of 

emissions covered by point-source clumps are not sensitive to threshold-1, due to the fact that their emissions are highly 

concentrated in limited area. On the contrary, the number and emissions associated with non-ESRI clumps are the most 

sensitive to the precision.  

Threshold-2 is used to define which grid cells shall be aggregated with the cores to form a clump. In this study, 420 

threshold-2 is chosen an order of magnitude smaller than threshold-1. This choice is somewhat arbitrary to include some 

marginal areas. With this default choice of threshold-2, the fraction of emissions from clumps to the total emissions is 

occasionally close to the estimate of the share of CO2 emissions or energy use from cities to regional total in EIA and GEA 

(Table 1). The last two columns in Table 3 list the results for different values of threshold-2. Threshold-2 mainly impacts the 

extent of surrounding grid cells near the cores of each area clump. When threshold-2 is chosen to be 0.071 g C m-2 hr-1 (twice 425 

as large as the default one), keeping threshold-1 as 0.36 g C m-2 hr-1, the fraction of emissions covered by the clumps to the 

global total is reduced from 72% (default result, T2) to 66%. The comparison between the results of T2, T6, and T4 in Table 

3 shows that the identification of non-ESRI clumps is more sensitive to threshold-1 (precision), while the identification of 

ESRI clumps is more sensitive to threshold-2 (grid cells around cores in ESRI urban areas). 

 430 

 

 

 

 

 435 
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Table 3 The sensitivity of number of emission clumps (integers before parentheses) and the fractions of emissions covered 

by the emission clumps (values in the parentheses) to global total to the thresholds in the clump algorithm 

Experiments T1 T2 T3 T4 T5 T6 

Precision of a single sounding (ppm) 0.3 ppm 0.5 ppm 0.7 ppm 1.0 ppm 0.5 ppm 0.5 ppm 

Threshold-1 (g C m-2 hr-1) 0.21 0.36 0.5 0.71 0.36 0.36 

Threshold-2 (g C m-2 hr-1) 0.021 0.036 0.05 0.071 0.05 0.071 

ESRI clumps 
2756 

(36%) 

2017 

(32%) 

1498 

(29%) 

1009 

(26%) 

2017 

(30%) 

2017 

(28%) 

Non-ESRI clumps 
6332 

(15%) 

3071 

(10%) 

1837 

(7.7%) 

1109  

(6%) 

3071 

(9.2%) 

3071 

(8.4%) 

Point-source clumps 
6928 

(30%) 

6226 

(30%) 

5774 

(30%) 

5304 

(30%) 

6226 

(30%) 

6226 

(30%) 

Total 
16016 

(80%) 

11314 

(72%) 

9109 

(67%) 

7422 

(61%) 

11314 

(69%) 

11314 

(66%) 

 

The emission clumps is a valuable concept relevant for the monitoring of fossil fuel CO2 emissions from satellites. Fig. 440 

8 shows that if the ODIAC-clumps are applied to other emission maps even without any adjustment, a majority of emission 

hotspots (indicated by red plus green bars in Fig. 8) are still included in the clump areas. However, Fig. 9 shows that there 

are large differences in the way emitting grid cells are grouped depending on the input emission map. When multiplying the 

map of ODIAC-clumps by another X emission map, the difference between the emissions from ODIAC and the emissions 

from the same area in the X map, for a single clump, range between 0%-165% (5th - 95th percentiles). The relative 445 

differences tend to be larger for small clumps than large ones. For the monitoring of fossil fuel CO2 emissions from the space, 

these results highlight the necessity to objectively associate the observed CO2 plumes with underlying emitting regions.  

The emission clumps defined in this study have at least one grid cell that will generate an excess of XCO2 of at least 0.5 

ppm over a morning period of 6 hours, assuming no atmospheric horizontal transport. This assumption is optimistic in terms 

of detectability of XCO2 plumes. In reality, accounting for wind advection or vegetation fluxes near a clump, XCO2 450 

enhancement in plumes may be smaller than 0.5 ppm, and therefore harder to detect with imagers. In this sense, the 

emissions covered in emission clumps derived based on such an assumption conservatively define the upper fraction of fossil 

fuel CO2 emissions that could be constrained by XCO2 imagery. In addition, the sampling of plumes will be reduced in 

presence of clouds, and will suffer from XCO2 biases related to aerosol loads (Broquet et al., 2018; Pillai et al., 2016). The 

emission clumps defined in this study provide a test bed for assessing the potential of satellite imagery for monitoring fossil 455 

fuel CO2 emissions. In the future, global/regional inversion systems and observing system simulation experiment (OSSE) 

frameworks shall be developed using emission fields classified into clumps. Such inversions and OSSE studies will play a 

critical role in the deployment of new observation strategies and assessing the potential of these observing systems for 

assessing the fossil fuel CO2 emissions (e.g. Broquet et al., 2018; Turner et al., 2016; Pillai et al., 2016).  
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5. Data availability 460 

The ODIAC2017 data product is available from a website can be downloaded from the website 

http://db.cger.nies.go.jp/dataset/ODIAC/ (or https://doi.org/10.17595/20170411.001). The TIMES data product can be 

downloaded from http://cdiac.ess-dive.lbl.gov/ftp/Nassar_Emissions_Scale_Factors/. The clump map can be downloaded 

from https://doi.org/10.6084/m9.figshare.7217726.v1. 

6. Summary and Conclusion 465 

In this study, we have identified a set of large emission clumps from a high-resolution emission inventory. These 

clumps will generate individual atmospheric XCO2 plumes that may be observed from space. This identification method 

identify the clump cores using ESRI map of major urban area and a high threshold related to the precision of XCO2 

measurements from planned satellites. It uses a low threshold and a RW algorithm to consider the area in the vicinity of the 

cores and split the area between different clumps based on the spatial gradients in the emission field. The emission clumps 470 

defined in this study depict the emitting hotspots around the globe that are relevant for the monitoring of fossil fuel CO2 

emissions from the satellites measurements. The clumps are derived with a trans-boundary approach, bypassing any artificial 

border imposed by national emissions accounting. In total, the emission clumps cover 72% of the total emissions in the 

original ODIAC. They defines the scales and regions of monitoring the short-term temporal profiles and long term trends in 

fossil fuel CO2 emissions, which might be very useful for the Global Stocktaking exercise of UNFCCC. The clumps that 475 

have been identified here span a large range of emission. Given actual atmospheric transport, it is not clear whether those in 

the low range of emission generate an atmospheric CO2 plume that can be identified from space. The presence of cloud cover 

may also challenge the detection of XCO2 plumes and thus the estimate of emissions using space-borne measurements. 

Which fraction of the identified clump can be observed from space, and what accuracy can be expected from the atmospheric 

inversion requires an OSSE framework which shall be developed in a future paper. 480 

Appendix 

We make a calculation of the emission flux that would generate a 0.5 ppm excess of XCO2 during 6 hours without wind. 

This is a conservative case with the accumulation of all emissions in the air column. The 0.5 ppm XCO₂ is taken as the 

individual sounding precision of a satellite CO₂ imager. Assuming a constant emission rate F (g C m-2 hr-1) during 6 hours, 

the XCO2 excess (XCO2, unit: ppm) is given by: 485 

XCO2=F×6/MC/Xair×106                                                                              (1) 

where MC (=12×10-3 kg mol-1) represented the molar mass of C, Xair (unit: mol m-2) represented the molar quantity of air 

mass in the air column. The Xair could be approximated by: 
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Xair=Psruf/g/Mair                                                                                    (2) 

where Psurf (=1.013×105 Pa) represents the surface pressure, g (=9.8 m s-2) represents the acceleration of gravity, Mair 490 

(=29×10-3 kg mol-1) represents the average molar mass of air. Thus, the minimum emissions F* that would generate a 0.5 

ppm excess of XCO2 is computed: F*=0.36 g m-2 hr-1. 
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